Clinical Management of Odontogenic Keratocyst: Case Report and Integrative Literature Review

Ângelo Fonseca-Silva a, Carolina Carvalho de Oliveira Santos b and Thiago Fonseca-Silva b*

a School of Dentistry, Faculdades Unidas do Norte Minas – Funorte, MG, Brazil.
b Department of Dentistry, School of Biological and Health Sciences, Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM, Diamantina, MG, Brazil.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors TFS and AFS designed the study. Author AFS analyzed the data. Authors TFS, AFS and CCOS drafted the article. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMMR/2023/v35i205186

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/104639

Received: 12/06/2023
Accepted: 17/08/2023
Published: 28/08/2023

ABSTRACT

Introduction: The odontogenic keratocyst is a common odontogenic cyst which affects mainly the posterior region of the mandible.

Aims: The aim of this study was to discuss the clinical management of odontogenic keratocyst, based on a case report and an integrative literature review.

Case Report: A 34-year-old woman has visited the Oral Surgery Division with a complaint of alignment discomfort of her teeth. Radiographic examination showed a well-defined multi-focus radiolucent area in the left posterior region of the mandible with involvement of cortical lingual bone. The incisional biopsy was performed and the diagnosis of Odontogenic Keratocyst was
confirmed. Conservative treatment with decompression management was accomplished. 11 months follow-up revealed considerable reduction in lesion size, bone neoformation and mandibular cortical bone consolidation.

**Conclusion:** Conservative or radical management of odontogenic keratocyst depends on several factors such as location and size of the lesion, involvement of nerves and vessels and bone destruction area. The choice of treatment must be discussed and defined for each case, aiming at the patient’s well-being and the case outcome.

**Keywords:** Odontogenic keratocyst; decompression; odontogenic cyst; treatment.

### 1. INTRODUCTION

Odontogenic keratocyst (OKC) is a cystic pathological condition that originates from the dental lamina, representing approximately 11.7% of all cystic odontogenic lesions [1]. The OKC can affect maxilla and mandible [2], however it has highest prevalence in posterior region of the mandible [3].

The World Health Organization has classified the OKC as a neoplasm due to its aggressive clinical course, high potential for recurrences, mutations in the PTCH1 tumor suppressor gene, satellite cysts and association with Gorlin-Goltz syndrome [4]. However, in 2017, WHO published a new classification of head and neck tumors, in which keratocyst odontogenic tumor was moved back to cysts category and it was named odontogenic keratocyst given that there was not enough evidence to characterize it as a neoplastic lesion [5].

Considering the characteristics and clinical heterogeneity of OKC, the aim of this study was to discuss the clinical management of the OKC based on a case report and an integrative literature review.

### 2. CASE REPORT

This study was accomplished at School of Dentistry of Faculdades Unidas do Norte Minas, MG, Brazil, and approved by the Research Ethics Committee under protocol no. 2.844.090. A 34-year-old woman has visited Oral Surgery Division complaining discomfort on alignment of her teeth. Medical history was not contributory. In the extraoral examination, it was identified facial symmetry and no dermal lesions. The intraoral examination revealed satisfactory oral health, absence of carious lesions or periodontitis. Dental restorations and dental crowding in the lower arch were observed. Computed tomographic examination showed a well-defined multi-focus hypodense area in the left posterior region of the mandible with involvement of cortical lingual bone (Fig. 1).

After thorough analysis of the case, the patient was diagnosed with a mandibular cystic lesion. The diagnostic hypotheses were odontogenic keratocyst and multicystic ameloblastoma.

For content evaluation, aspiration puncture of the lesion was performed. A provisional diagnosis of OKC was considered due to presence of whitish liquid and thick appearance on aspiration, compatible with keratin (Fig. 2A). Due to high size of the lesion, mandibular fragility and risk of inferior alveolar nerve injuries incisional biopsy...
and additional decompression of the lesion with a silicone ring were considered (Fig. 2B).

The sample biopsied were included in paraffin and stained with hematoxylin and eosin (H&E). Histopathological examination revealed a fragment of cystic capsule of odontogenic origin, partially coated by few layers of parakeratinized epithelium. The basal layer of the epithelium consisted of columnar cells with palisade morphology and hyperchromatic nuclei (Fig. 3). In the most superficial layer of the epithelium was observed the presence of keratin. The capsule was composed of loose connective tissue, blood vessels and moderate mononuclear inflammatory infiltrate. These findings led to the definitive diagnosis of odontogenic keratocyst.

Cone beam computed tomography with 3D reconstruction was performed 11 months after the decompression surgery procedure to evaluate lesion size reduction. Image findings revealed a considerable reduction in lesion size, bone neoformation and mandibular cortical bone consolidation (Fig. 4).

![Fig. 1. A) Computed tomographic examination showed a well-defined multi-focus hypodense area in the left posterior region of the mandible with involvement of cortical lingual bone. B) 3D reconstruction of left posterior region of mandible](image1)

![Fig. 2. A) Aspiration puncture showed the presence of whitish liquid. B) Lesion decompression with a silicone ring](image2)

![Fig. 3. Histopathological examination stained with hematoxylin and eosin. A) 10x and B) 40x](image3)
3. DISCUSSION

Odontogenic keratocyst is a worldwide recognized pathological condition due to its aggressive behavior and propensity to recurrence. In this context, treatment management of OKC has fundamental importance for the lesion repair outcome.

The origin of odontogenic keratocyst is based on the association between remaining cell remains of the dental lamina with genetic changes in PTCH1 genes, increased expression of the PCNA and Ki67 genes, and functional dysregulation of tumor suppressor genes [4,11,12]. Additionally, it could have elevated expression of B2 (BCL2) cell lymphoma anti-apoptotic gene in OKC compared to other odontogenic lesions [11]. This set of changes provides epithelial remains proliferation and formation of the cystic cavity.

Etiological and pathogenic aspects of OKC reveal that lesion recurrence may be associated to epithelial remnants of primary lesion during enucleation, or to presence of satellite cysts and microcysts in the tissue underlying [13]. Unfortunately, the cystic coating of most of OKC is quite and friable, which makes the total enucleation of the lesion extremely difficult, especially in large and multilocular lesions [14,15]. The use of Carnoy’s solution (absolute alcohol, chloroform, acetic acid, and ferric chloride) in the surgical site, after removal of the lesion, may assist in epithelial remnants destruction and, consequently, it could reduce recurrence rates [14].

Decompression or marsupialization are considered a conservative technique in the management of OKC that aimed size decrease of extensive lesions, prior to enucleation or for complete resolution of the lesions [16]. This approach is interesting to preservation of important anatomical structures such as inferior alveolar nerve and prevention of a consequent possible deformity [17]. Marsupialization and decompression have been defined as different surgical techniques: In marsupialization technique, a part of the cyst is removed followed by suturing the lesion’s exposed boundaries to the adjacent mucosa exposing the cyst to oral cavity. In decompression, a drain is placed inside the lesion, which it maintains communication with the cystic cavity [17].

The decompression or marsupialization leads to a decrease in the intracystic pressure and may result in bone neoformation with thickening of cystic epithelial lining. This event allows better surgical management in the total removal of the lesion and, consequently, in reduction of recurrence potential [13].

The last OKC 10-year-integrative review published in PubMed database showed 27 cases, the majority presented unilocular lesions (n=23), and, in 19 studies, the lesions were not associated with unerupted teeth. Considering treatment options, enucleation followed by curettage was the most frequent finding (n=22), decompression or marsupialization was utilized in the minority of cases (n=5), and use of Carnoy’s solution was observed in 5 cases [6,10,18-27]. The articles data can be found in Table 1.
## Table 1. Data from the articles included in the study

<table>
<thead>
<tr>
<th>Autor/Year</th>
<th>Gender</th>
<th>Age</th>
<th>Location</th>
<th>Included tooth</th>
<th>Aspect</th>
<th>Size</th>
<th>Marsupialization or Decompression</th>
<th>Enucleation</th>
<th>Carnoy’s solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matijevic, S., et al. (2012)</td>
<td>Male</td>
<td>52</td>
<td>Mandibular body and branch</td>
<td>Yes</td>
<td>Single</td>
<td>4.0 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Priya, K., et al. (2014)</td>
<td>Male</td>
<td>18</td>
<td>Left side maxilla</td>
<td>No</td>
<td>Single</td>
<td>1.0 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>20</td>
<td>Right side maxilla</td>
<td>No</td>
<td>Single</td>
<td>5 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>16</td>
<td>Left side maxilla</td>
<td>No</td>
<td>Single</td>
<td>6 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>20</td>
<td>Left maxilla</td>
<td>No</td>
<td>Single</td>
<td>5 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>16</td>
<td>Right side maxilla</td>
<td>No</td>
<td>Single</td>
<td>1.5 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Gupta, R. K., et al. (2016)</td>
<td>Male</td>
<td>22</td>
<td>Body and mandibular branch on the left side.</td>
<td>Yes</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Arshad F. 2016</td>
<td>Male</td>
<td>20</td>
<td>Mandible/region near the apexes of teeth 13 and 23</td>
<td>Yes</td>
<td>Multi-focus</td>
<td>2.0 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Gopalkrishna A. A., et al. (2018)</td>
<td>Female</td>
<td>82</td>
<td>Mandibular body on the left side</td>
<td>Yes</td>
<td>Single</td>
<td>2.5 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Shetty, P., et al. (2018)</td>
<td>Female</td>
<td>22</td>
<td>Posterior maxilla on the left side</td>
<td>Yes</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Khan, A. A., et al. (2019)</td>
<td>Female</td>
<td>35</td>
<td>Bilateral body and mandibular branch</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Polak, K., et al. (2019)</td>
<td>Not reported</td>
<td>53</td>
<td>Anterior region of mandible</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Radia, S., et al. (2019).</td>
<td>Male</td>
<td>10</td>
<td>Left side maxilla</td>
<td>Yes</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sheethal, H. S., et al. (2019).</td>
<td>Female</td>
<td>15</td>
<td>Posterior maxilla the left side invading the sinus</td>
<td>Yes</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Autor/Year</td>
<td>Gender</td>
<td>Age</td>
<td>Location</td>
<td>Included tooth</td>
<td>Aspect</td>
<td>Size</td>
<td>Marsupialization or Decompression</td>
<td>Enucleation</td>
<td>Carnoy’s solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>-----</td>
<td>-------------------------------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Telagi, N. and B. M. Ahmed</td>
<td>Male</td>
<td>40</td>
<td>Mandibular body on the right side</td>
<td>No</td>
<td>Multi-focus</td>
<td>6 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(2019).</td>
<td>Female</td>
<td>19</td>
<td>Left side mandibular angle</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Vijayarangan, S. (2019)</td>
<td>Male</td>
<td>29</td>
<td>Mandibular body</td>
<td>No</td>
<td>Multi-focus</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Female</td>
<td>35</td>
<td>Element maxilla 14 to 24.</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Male</td>
<td>29</td>
<td>Mandibular body</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Female</td>
<td>35</td>
<td>Posterior mandible</td>
<td>Yes</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firth, N., et al. (2020)</td>
<td>Female</td>
<td>57</td>
<td>Between teeth 42 and 43</td>
<td>No</td>
<td>Single</td>
<td>1.5 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Goto, M., et al. (2020)</td>
<td>Male</td>
<td>21</td>
<td>Maxillary sinus and left side sphenoid bone</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Vallejo-Rosero, K. A., et al. (2020)</td>
<td>Female</td>
<td>67</td>
<td>Anterior mandible</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prashanth, B. R., et al. (2020)</td>
<td>Male</td>
<td>29</td>
<td>Anterior region of mandible</td>
<td>No</td>
<td>Single</td>
<td>&gt; 7 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Roman, C. R., et al. (2022)</td>
<td>Male</td>
<td>19</td>
<td>Posterior region of the left side jaw</td>
<td>No</td>
<td>Single</td>
<td>4 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lohokare, A. U., et al. (2022)</td>
<td>Male</td>
<td>34</td>
<td>Right mandibular body</td>
<td>No</td>
<td>Multi-focus</td>
<td>3 cm</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Treatment modalities for OKC result in different recurrence rates and include enucleation [28], enucleation with cryotherapy [29], enucleation with application of Carnoy’s solution [30], marsupialization [16], decompression [31] and resection [32]. Interestingly, the minority of cases analyzed performed marsupialization or decompression techniques. The literature highlights the benefits of marsupialization or decompression procedure in extensive lesions, as well application of Carnoy’s solution in the sugery area after cyst removal [13,14]. Such procedures when well indicated and well performed can reduce the potential for recurrence of the lesion. In the present case, and to minimize the risk of injuries of noble structures such as inferior alveolar nerve and fracture of the mandible, the decompression was performed as a primary treatment. The main objective of decompression is gradually reducing the lesion size for subsequent enucleation of the cyst in a minor traumatic surgery [33]. This technique can promote epithelial differentiation and modification in cytokeratin 10 expression from positive to negative, transforming cystic epithelium in oral cavity-like epithelium and improve the cystectomy management forward step [24,34].

The literature points out that, despite the lesion size, it must have a preference to surgical treatments such as enucleation or resection with or without Carnoy’s solution application or cryotherapy in hospital environment under general anesthesia [23]. Meanwhile, on the other hand, it is known that there are some geographic places where access to high complexity dental assistance is restricted, placing decompression or marsupialization as a viable therapeutic management.

The OKC recurrence rates can reach 62,5%, what demonstrates aggressive growth pattern despite its benign characteristics [7]. It could justify why expert opt for radical treatments such as cystectomy with Carnoy’s solution application as adjuvant therapy. This application can destroy the remaining cystic epithelial cells and can cause a superficial bone necrosis reducing the possibility of recurrence [6,10,20].

Therefore, it is possible to state the clinical management of odontogenic keratocyst based on several factors, among them: lesion size and its location, professional expertise, and available treatment modality. The option for radical or conservative techniques should be debated and well defined for each clinical case, always aiming for patient’s well-being and case outcome.

4. CONCLUSION

Conservative or radical management of odontogenic keratocyst depends on several factors such as location and size of the lesion, involvement of nerves and vessels and bone destruction area. The choice of treatment must be discussed and defined for each case, aiming at the patient’s well-being and the case outcome.

CONSENT

As per international standard or university standard, patients’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

This study was accomplished at School of Dentistry of Faculdades Unidas do Norte Minas, Brazil, and approved by the Research Ethics Committee under protocol no. 2.844.090.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

7. Fidele NB, et al. Recurrence of odontogenic keratocysts and possible


